Phytoremediation: Using Green Plants to Clean up Contaminated Soil, Groundwater, and Wastewater

نویسندگان

  • Ray R. Hinchman
  • M. Cristina Negri
چکیده

Phytoremediation, an emerging cleanup technology for contaminated soils, groundwater, and wastewater that is both low-tech and low-cost, is defined as the engineered use of green plants (including grasses, forbs, and woody species) to remove, contain, or render harmless such environmental contaminants as heavy metals, trace elements, organic compounds, and radioactive compounds in soil or water. A greenhouse experiment on zinc uptake in hybrid poplar (Populus sp.) was initiated in 1995. These experiments are being conducted to confirm and extend field data from Applied Natural Sciences, Inc. (our CRADA partner), indicating high levels of zinc (4,200 μg/g [ppm]) in leaves of hybrid poplar growing as a cleanup system at a site with zinc contamination in the root zone of some of the trees. Analyses of soil water from lysimeter pots that had received several doses of zinc indicated that the zinc was totally sequestered by the plants in about 4 hours during a single pass through the root system. The data also showed concentrations of sequestered metal of >38,000 μg/g (ppm) Zn in the dry root tissue. Above-ground organs contained less metal. A similar experiment evaluating zinc uptake in Eastern gamagrass (Tripsacum dactyloides), a large, robust native grass was conducted in 1996. This study found similar patterns of partitioning and sequestration as the poplar experiments, but growth and transpiration were more suppressed at the highest levels of accumulation in gamagrass. These levels of sequestered zinc observed in both hybrid poplar and Eastern gamagrass exceed the levels found in either roots or tops of many of the known "hyperaccumulator" species. Because the roots sequester most of the contaminant taken up in most plants, a major objective of this program is to determine the feasibility of root harvesting as a method to maximize the removal of contaminants from soils. Currently ongoing studies include heavy metal uptake and fate from soil by willow trees as influenced by natural and chemical chelating agents, rooting patterns in hybrid poplar, and the uptake and fate of halogenated organics in hybrid poplar. Other research includes the development and successful field demonstration of a plant bioreactor for processing the salty wastewater from petroleum wells; the demonstration is currently under way at a natural gas well site in Oklahoma, in cooperation with Devon Energy Corporation. INTRODUCTION AND BACKGROUND At many hazardous waste sites requiring cleanup, the contaminated soil, groundwater, and/or wastewater contain a mixture of contaminant types, often at widely varying concentrations. These may include salts, organics, heavy metals, trace elements, and radioactive compounds. The simultaneous cleanup of multiple, mixed contaminants using conventional chemical and thermal methods is both technically difficult and expensive; these methods also destroy the biotic component of soils. Phytoremediation, an emerging cleanup technology for contaminated soils, groundwater, and wastewater, is both low-tech and low-cost. We define phytoremediation as the engineered use of green plants, including grasses, forbs, and woody species, to remove, contain, or render harmless such environmental contaminants as heavy metals, trace elements, organic compounds, and radioactive compounds in soil or water. This definition includes all plant-influenced biological, chemical, and physical processes that aid in the uptake, sequestration, degradation, and metabolism of contaminants, either by plants or by the free-living organisms that constitute the plant's rhizosphere. Phytoremediation takes advantage of the unique and selective uptake capabilities of plant root systems, together with the translocation, bioaccumulation, and contaminant storage/degradation abilities of the entire plant body. Plant-based soil remediation systems can be viewed as biological, solar-driven, pump-and-treat systems with an extensive, selfextending uptake network (the root system) that enhances the below-ground ecosystem for subsequent productive use. Examples of simpler phytoremediation systems that have been used for years are constructed or engineered wetlands, often using cattails to treat acid mine drainage or municipal sewage. Our work extends to more complicated remediation cases: the phytoremediation of a site contaminated with heavy metals and/or radionuclides involves "farming" the soil with selected plants to "biomine" the inorganic contaminants, which are concentrated in the plant biomass (Ross 1994, Salt et al. 1995). For soils contaminated with toxic organics, the approach is similar, but the plant may take up or assist in the degradation of the organic (Schnoor et al. 1995). Several sequential crops of hyperaccumulating plants could possibly reduce soil concentrations of toxic inorganics or organics to the extent that residual concentrations would be environmentally acceptable and no longer considered hazardous. The potential also exists for degrading the hazardous organic component of mixed contamination, thus reducing the waste (which may be sequestered in plant biomass) to a more manageable radioactive one. For treating contaminated wastewater, the phytoremediation plants are grown in a bed of inert granular substrate, such as sand or pea gravel, using hydroponic or aeroponic techniques. The wastewater, supplemented with nutrients if necessary, trickles through this bed, which is ramified with plant roots that function as a biological filter and a contaminant uptake system. An added advantage of phytoremediation of wastewater is the considerable volume reduction attained through evapotranspiration (Hinchman and Negri, 1994a). Though it is not a panacea, phytoremediation is well suited for applications in low-permeability soils, where most currently used technologies have a low degree of feasibility or success, as well as in combination with more conventional cleanup technologies (electromigration, foam migration, etc.). In appropriate situations, phytoremediation can be an alternative to the much harsher remediation technologies of incineration, thermal vaporization, solvent washing, or other soil washing techniques, which essentially destroy the biological component of the soil and can drastically alter its chemical and physical characteristics as well, creating a relatively nonviable solid waste. Phytoremediation actually benefits the soil, leaving an improved, functional, soil ecosystem at costs estimated at approximately one-tenth of those currently adopted technologies.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Phytoremediation: an Affordable Green Technology for the Clean-up of Metal-contaminated Sites in Sri Lanka

Phytoremediation, the use of plants to remediate sites contaminated with organic and inorganic pollutants, and phytomining, the technology involved in extracting the pollutants removed for commercial purposes, are rapidly-growing industries with multi-million dollar markets. This solar-driven, green technology is often favored over more conventional methods of clean-up due to its low cost, low ...

متن کامل

The Potential of Chrysanthemum and Pelargonium for Phytoextraction of Lead - Contaminated Soils

Phytoremediation is a set of technologies that uses plants to clean up contaminated soils and groundwater. Phytoremediation is environmentally friendly, successful and cost-effective compared to other in situ methods such as the electrokinetic method. In this work, two local plant species, Chrysanthemum and Pelargonium, were examined for their ability to uptake lead from lead contaminated soils...

متن کامل

Phytoremediation: A Green Technology to Remove Environmental Pollutants

Land, surface waters, and ground water worldwide, are increasingly affected by contaminations from industrial, research experiments, military, and agricultural activities either due to ignorance, lack of vision, carelessness, or high cost of waste disposal and treatment. The rapid build-up of toxic pollutants (metals, radionuclide, and organic contaminants in soil, surface water, and ground wat...

متن کامل

Role of Arbuscular Mycorrhizal (AM) Fungi in Phytoremediation of Soils Contaminated: A Review

Pollution of the soil environment with toxic materials from fossil burning, mining and smelting of metalliferous ores, disposal of sewage, fertilizers and pesticides, etc. has increased dramatically since the onset of industrial revolution. Application of plants with ability of absorbing heavy metals is a low-cost alternative for eliminating soils from heavy metals. Phytoremediation uses plants...

متن کامل

Role of Arbuscular Mycorrhizal (AM) Fungi in Phytoremediation of Soils Contaminated: A Review

Pollution of the soil environment with toxic materials from fossil burning, mining and smelting of metalliferous ores, disposal of sewage, fertilizers and pesticides, etc. has increased dramatically since the onset of industrial revolution. Application of plants with ability of absorbing heavy metals is a low-cost alternative for eliminating soils from heavy metals. Phytoremediation uses plants...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999